169 research outputs found

    Spurious harmonic response of multipulse quantum sensing sequences

    Full text link
    Multipulse sequences based on Carr-Purcell decoupling are frequently used for narrow-band signal detection in single spin magnetometry. We have analyzed the behavior of multipulse sensing sequences under real-world conditions, including finite pulse durations and the presence of detunings. We find that these non-idealities introduce harmonics to the filter function, allowing additional frequencies to pass the filter. In particular, we find that the XY family of sequences can generate signals at the 2fac, 4fac and 8fac harmonics and their odd subharmonics, where fac is the ac signal frequency. Consideration of the harmonic response is especially important for diamond-based nuclear spin sensing where the NMR frequency is used to identify the nuclear spin species, as it leads to ambiguities when several isotopes are present.Comment: 6 pages, 7 figure

    Nuclear spin relaxation induced by a mechanical resonator

    Full text link
    We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.Comment: 4 pages, 4 figure

    Feedback cooling of a cantilever's fundamental mode below 5 mK

    Full text link
    We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of 2.2 K to 2.9 +/- 0.3 mK using active optomechanical feedback. The lowest observed mode temperature is consistent with limits determined by the properties of the cantilever and by the measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or "squash" the optical interferometer intensity noise below the shot noise level.Comment: 4 pages, 6 figure

    Force-detected nuclear double resonance between statistical spin polarizations

    Full text link
    We demonstrate nuclear double resonance for nanometer-scale volumes of spins where random fluctuations rather than Boltzmann polarization dominate. When the Hartmann-Hahn condition is met in a cross-polarization experiment, flip-flops occur between two species of spins and their fluctuations become coupled. We use magnetic resonance force microscopy to measure this effect between 1H and 13C spins in 13C-enriched stearic acid. The development of a cross-polarization technique for statistical ensembles adds an important tool for generating chemical contrast in nanometer-scale magnetic resonance.Comment: 14 pages, 4 figure

    An off-board quantum point contact as a sensitive detector of cantilever motion

    Full text link
    Recent advances in the fabrication of microelectromechanical systems (MEMS) and their evolution into nanoelectromechanical systems (NEMS) have allowed researchers to measure extremely small forces, masses, and displacements. In particular, researchers have developed position transducers with resolution approaching the uncertainty limit set by quantum mechanics. The achievement of such resolution has implications not only for the detection of quantum behavior in mechanical systems, but also for a variety of other precision experiments including the bounding of deviations from Newtonian gravity at short distances and the measurement of single spins. Here we demonstrate the use of a quantum point contact (QPC) as a sensitive displacement detector capable of sensing the low-temperature thermal motion of a nearby micromechanical cantilever. Advantages of this approach include versatility due to its off-board design, compatibility with nanoscale oscillators, and, with further development, the potential to achieve quantum limited displacement detection.Comment: 5 pages, 5 figure

    Nuclear Magnetic Resonance Imaging with 90 nm Resolution

    Full text link
    Magnetic resonance imaging, based on the manipulation and detection of nuclear spins, is a powerful imaging technique that typically operates on the scale of millimeters to microns. Using magnetic resonance force microscopy, we have demonstrated that magnetic resonance imaging of nuclear spins can be extended to a spatial resolution better than 100 nm. The two-dimensional imaging of 19F nuclei was done on a patterned CaF2 test object, and was enabled by a detection sensitivity of roughly 1200 nuclear spins. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4x10^6 T/m, and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume of less than 650 zl represents 60,000x smaller volume than previous NMR microscopy and demonstrates the feasibility of pushing magnetic resonance imaging into the nanoscale regime.Comment: 24 pages, 5 figure
    • …
    corecore